Битовые операции

Материал из Seo Wiki - Поисковая Оптимизация и Программирование

Перейти к: навигация, поиск
Эта статья о битовых операциях в программировании. У этого термина существуют и другие значения, см. Битовая операция (значения).


Битовая операция в программировании — некоторые операции над цепочками битов. В программировании, как правило, рассматриваются лишь некоторые виды этих операций: логические побитовые операции и битовые сдвиги. Битовые операции применяются в языках программирования и цифровой технике, изучаются в дискретной математике.

Содержание

Побитовые логические операции

Ряд источников по языкам низкого уровня называет побитовые логические операции просто логическими,[1][2] но в терминологии программирования на языках высокого уровня в названиях битовых операций присутствуют прилагательные битовый, побитовый (например: «побитовое логическое И», оно же «побитовое умножение»), поразрядный.

В некоторых языках программирования названия операторов, соответствующих логическим и побитовым логическим операциям, похожи. Кроме того, язык программирования может допускать неявное приведение числового типа к логическому и наоборот. В таких языках программирования необходимо внимательно следить за использованием логических и побитовых операций, перемешивание которых может привести к ошибкам. Например, в C++ результатом выражения "2 && 1" (логическое И) явлется ненулевое число, а результатом выражения "2 & 1" (побитовое И) — 0.

Побитовое отрицание

Побитовое отрицание (или побитовое НЕ, или дополнение) — это унарная операция, действие которой эквивалентно применению логического отрицания к каждому биту двоичного представления операнда. Другими словами, на той позиции, где в двоичном представлении операнда был 0, в результате будет 1, и, наоборот, где была 1, там будет 0. Например:

НЕ01011
10100

Побитовое И

Побитовое И — это бинарная операция, действие которой эквивалентно применению логического И к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если оба соответствующих бита операндов равны 1, результирующий двоичный разряд равен 1; если же хотя бы один бит из пары равен 0, результирующий двоичный разряд равен 0.

Пример:

И01011
11001
01001

Побитовое ИЛИ

Побитовое ИЛИ — это бинарная операция, действие которой эквивалентно применению логического ИЛИ к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если оба соответствующих бита операндов равны 0, двоичный разряд результата равен 0; если же хотя бы один бит из пары равен 1, двоичный разряд результата равен 1.

Пример:

ИЛИ01011
11001
11011

Побитовое исключающее ИЛИ

Побитовое исключающее ИЛИ (или побитовое сложение по модулю два) — это бинарная операция, действие которой эквивалентно применению логического исключающего ИЛИ к каждой паре битов, которые стоят на одинаковых позициях в двоичных представлениях операндов. Другими словами, если соответствующие биты операндов различны, то двоичный разряд результата равен 1; если же биты совпадают, то двоичный разряд результата равен 0.

Пример:

Искл. ИЛИ01011
11001
10010

Первое русское название операции обусловлено тем, что результат данной операции отличается от результата «ИЛИ» только в одном случае из 4 случаев входа — обоих 1 (случай одновременной истинности аргументов «исключается»). Ещё в русской грамматике значение данной логической связки передаётся союзом «либо».

Второе название — тем, что действительно является сложением в кольце вычетов по модулю 2, из чего следуют некоторые интересные свойства. Например, в отличие от вышеописанных «И» и «ИЛИ» данная операция является обратимой, или инволютивной: <math>(x\oplus y)\oplus y = x</math>.

В графике «исключающее ИЛИ» применяется при выводе спрайтов на картинку — повторное её применение убирает спрайт с картинки. Благодаря инволютивности же эта операция нашла применение в криптографии как простейшая реализация идеального шифра (шифра Вернама). «Исключающее ИЛИ» также может использоваться для обмена двух переменных, используя алгоритм обмена при помощи исключающего ИЛИ.

Другие побитовые логические операции

В распространенных языках программирования встроенными средствами реализуются только четыре побитовые логические операции: И, ИЛИ, НЕ и исключающее ИЛИ. Для задания произвольной побитовой логической операции вполне достаточно перечисленных, и, более того, как следует из теории булевых функций, можно ограничиться еще меньшим набором базовых операций. Есть также языки программирования, где существует встроенная возможность выполнить любую бинарную логическую операцию побитово. Например, в PL/I есть встроенная функция BOOL, третий аргумент которой предназначен для указания произвольной логической операции, которую необходимо побитово применить к первым двум аргументам[3].

В языках программирования

В следующей таблице для некоторых языков программирования приведены встроенные операторы и функции, реализующие побитовые логические операции.

ЯзыкНЕИИЛИИскл. ИЛИДругие
C/С++, Java[4] ~&|^
Pascal[5] notandorxor
PL/I[6] INOTIANDIORIEORBOOL
¬&|¬
Prolog[7] \/\\/

Битовые сдвиги

Основная статья: Битовый сдвиг

К битовым операциям также относят битовые сдвиги. При сдвиге значения битов копируются в соседние по направлению сдвига. Различают несколько видов сдвигов — логический, арифметический и циклический, в зависимости от обработки крайних битов.

Также различают сдвиг влево (в направлении от младшего бита к старшему) и вправо (в направлении от старшего бита к младшему).

Файл:Rotate right logically.svg
Логический сдвиг
Файл:Rotate right arithmetically.svg
Арифметический сдвиг (правый)
Файл:Rotate right.svg
Циклический сдвиг
Файл:Rotate right through carry.svg
Циклический сдвиг через перенос

Логический сдвиг

При логическом сдвиге значение последнего бита по направлению сдвига теряется (копируясь в бит переноса), а первый приобретает нулевое значение.

Логические сдвиги влево и вправо используются для быстрого умножения и деления на 2, соответственно.

Арифметический сдвиг

Арифметический сдвиг аналогичен логическому, но значение слова считается знаковым числом представленному дополнительным кодом. Так при правом сдвиге старший бит сохраняет свое значение. Левый арифметический сдвиг идентичен логическому.

Циклический сдвиг

При циклическом сдвиге, значение последнего бита по направлению сдвига копируется в первый бит (и копируется в бит переноса).

Также различают циклический сдвиг через бит переноса — при нём первый бит по направлению сдвига получает значение из бита переноса, а значение последнего бита сдвигается в бит переноса.

Обобщение операций на булеву алгебру

Вместо одиночных битов мы можем рассмотреть векторы из фиксированного количества битов (в программировании их называют регистрами), например, байты. В программировании регистры рассматривают как двоичное разложение целого числа: <math>b = b_0 + 2 b_1 + 2^2 b_2 + ... + 2^{N-1} b_{N-1}</math>, где N — количество битов в регистре.

Тем не менее, ничто не мешает рассматривать эти регистры именно как битовые векторы и проводить булевые операции покомпонентно (бит номер k значения есть результат операции от битов номер k аргументов). Кстати, математически говоря, булевы операции распространяются таким образом на произвольную булеву алгебру. Таким образом мы получаем операции побитового И, ИЛИ, НЕ, искл. ИЛИ и т. д. Как арифметические, данные операции не обладают хорошими свойствами за исключением побитового НЕ, которое для чисел в дополнительном коде совпадает с вычитанием из −1 (~x == -1-x). Однако, они очень полезны в программировании.

2-адическая интерпретация

Целое число, записанное (в дополнительном коде) в бесконечный (в сторону положительных степеней двойки) двоичный регистр является естественным объектом для теории p-адических чисел при <math>p=2</math>. Множество целых 2-адических чисел (то есть произвольных бесконечных битовых последовательностей) может быть рассмотрено как булева алгебра точно так же как и множество значений битового регистра конечной длины. Все вышеперечисленные битовые операции оказываются непрерывными отображениями. Хотя практическое программирование не располагает регистрами бесконечной длины, это не мешает использовать данный теоретический факт в криптографии для создания быстродействующих алгоритмов шифрования.

См. также

Примечания

Личные инструменты

Served in 0.187 secs.